

WJEC England Biology A Level

SP C1 03: Investigation into factors affecting respiration in yeast Practical notes

www.pmt.education

▶ Image: Contraction PMTEducation

Introduction

Respiration is a series of **enzyme-controlled** reactions that release energy in the form of **ATP** from the **breakdown** of **organic compounds** (e.g. glucose).

Aerobic respiration take place when there is a plentiful supply of oxygen:

glucose + oxygen \rightarrow carbon dioxide + water (+ ATP)

The rate of production of carbon dioxide can be used as an indicator of the rate of respiration.

The rate of respiration is influenced by different **factors** (e.g. temperature, pH, nutrient availability). The effect of each of these factors can be determined by changing **one variable only**, and observing its effect on the rate of reaction.

In this practical, we will determine the effect of temperature on the rate of respiration in yeast.

Equipment

- 100 g dm⁻³ yeast
- 0.4 mol dm⁻³ sucrose solution
- 20 cm³ syringe
- Glass rod
- Water baths: 20, 30, 40, 50 and 60°C
- Thermometer
- Weight
- Permanent marker
- Stopwatch

Risk assessment

Hazard	Risk	Precaution	Emergency
Broken glass	Cuts	Keep glassware away from the edge of the desk	Dispose of broken glassware carefully; elevate cuts and apply pressure; do not remove glass from cuts; seek medical assistance
Boiling water	Scalding	Handle boiling water with care; use tongs to transfer boiling tubes; wear safety goggles	Run burn under cold water; seek medical assistance

▶ Image: PMTEducation

Water bath	Electric shock	Ensure hands are dry before plugging in/ unplugging the water bath	Seek medical assistance
Yeast	Allergic reaction	Handle yeast in a suspension form; use non-latex disposable gloves	Seek medical assistance

Method

- 1. Set up five water baths of varying temperatures: 20, 30, 40, 50 and 60°C
- 2. Take the yeast suspension and stir using a glass rod
- 3. Using a 20 cm³ syringe take up 5 cm³ yeast suspension
- 4. Take up **10 cm³ sucrose solution** into the **same** syringe
- 5. Draw the plunger of the syringe back until it is close to the barrel end. Invert to gently **mix** the contents.
- 6. Place the syringe into the water bath **horizontally**. *Ensure that the nozzle (which is off-centred) is on the side of the syringe close to the surface of the water.*
- 7. Allow to equilibrate for 5 minutes
- 8. Wait until gas bubbles begin to be expelled from the nozzle at regular intervals. Start a **stopwatch** and count the **number of bubbles** released in **one minute**. Record your results (see below).

DOG PMTEducation

- 9. Repeat steps 1 to 8 for the four other temperatures
- 10. Repeat the method a further two times to obtain three repeats for each temperature

Variables

Independent variable

The variable that is **changed** i.e. temperature

Dependent variable

The variable being **measured** whose value depends on the independent variable i.e. the number of bubbles released in **one minute**

Controlled variables

The variables that are kept constant during the experiment:

- Concentration of yeast suspension
 100 g dm⁻³ yeast suspension used throughout
- Concentration of sucrose solution
 0.4 mol dm⁻³ sucrose solution used throughout
- Volume of yeast suspension
 20 cm³ syringe used to measure 5 cm³ of 100 g dm⁻³ yeast suspension
- Volume of sucrose suspension
 20 cm³ syringe used to measure 10 cm³ of 0.4 mol dm⁻³ sucrose solution
- Period of time over which the bubbles are counted Bubbles counted for a period of one minute (timed using a stopwatch)

Results

Temperature (°C)	Number of bubbles counted in one minute			
	Repeat 1	Repeat 2	Repeat 3	Mean
20				
30				
40				

▶ Image: PMTEducation

www.pmt.education

50		
60		

The mean number of bubbles is proportional to the rate of reaction.

A graph of the mean number of bubbles against temperature can be plotted and the trend observed.

Conclusion

As temperature increases, the rate of respiration initially increases:

- Enzymes in the yeast suspension have more kinetic energy
- Random movement of molecules increases
- Probability of a successful collision increases
- More enzyme-substrate complexes form
- Rate of respiration increases

However, beyond the optimum temperature, the rate of respiration decreases:

- Increasing vibrations break bonds in the enzymes' tertiary structure
- Active sites change shape
- Enzymes denature
- Rate of respiration decreases

Network www.pmt.education

▶ Image: PMTEducation